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ON PERMUTATION LOCATION–SCALE TESTS 

Dominika Polko-Zając 1 

ABSTRACT 

Statisticians are constantly looking for methods of statistical inference that would 
be both effective and would require meeting as few assumptions as possible. 
Permutation tests seem to fit here, as using them makes it possible to perform 
statistical inference in situations where classical parametric tests do not work. 
Permutation tests appear to be comparably powerful to parametric tests, but 
require meeting fewer assumptions, e.g. regarding the size of the sample or the 
from of distribution of the tested variable in a population. The presented tests 
make it possible to verify the overall hypothesis about the identity of both location 
and scale parameters in the studied populations. In literature, the Lepage test and 
the Cucconi test are most often referred to in this context. The paper considers 
various forms of test statistics, and presents a simulation study carried out to 
determine the size and power of the tests under normality. As the study 
demonstrated, the advantage of the proposed method is that it can be applied to 
small-size samples. A nonparametric, complex procedure was used to assess the 
overall ASL (achieved significance level) value by applying the permutation 
principle. For comparative purposes, the results for the permutation Lepage test 
and the permutation Cucconi test are also presented. 

Key words: permutation tests, comparing populations, test power, the Lepage 

test, the Cucconi test. 

1. Introduction 

Comparing populations most frequently refers to a comparison of the 

characteristics of these populations. If it is assumed that population distributions 

differ only in the central tendency, there are various parametric and 

nonparametric tests to verify this hypothesis. Many authors undertake to study the 

power and size of tests for the significance of differences between means or 

medians in two or more populations, using for this purpose simulation methods 

based on bootstrap or permutation tests (Janssen and Pauls, 2005; Chang and 

Pal, 2008; Kończak, 2016; Anderson et al., 2017). The problem of comparing 

variances in populations is also common in research. For example, comparative 

studies using simulations were conducted by Hall (1972), Geng, Wang and Miller 

(1979), Keselman, Games and Clinch (1979), Conover, Johnson and Johnson 
                                                           
1  Department of Statistics, Econometrics and Mathematics, University of Economics in Katowice.  

E-mail: dominika.polko@ue.katowice.pl. ORCID ID: https://orcid.org/0000-0003-4098-6647. 



154                                                                     D. Polko-Zając: On permutation location… 

 

 

(1981), Balakrishnan and Ma (1990), Lim and Loh (1996), Marozzi (2011) and 

Gogoi and Gogoi (2017). 

Pesarin (2001) initiated the approach for the nonparametric testing problem. 

He considered reducing the scope of the null hypothesis by splitting it into several 

partial hypotheses. This nonparametric approach is to perform some reasonable 

tests for each individual partial hypothesis and combine their results with 

a chosen combining function. A multi–aspect test to location problem was 

considered in works by Marozzi (2004), Marozzi (2007) or Salmaso and Solari 

(2005). Nonparametric combination procedure to asses overall ASL (achieved 

significance level) value is very useful in the scale problem too (Marozzi 2012a, 

2012b).  

It is more complicated to test differences between both location parameters 

and scale parameters of the distribution in the populations studied. A need of 

simultaneously detecting location and scale changes arises in many areas, for 

example in financial matters in stock prices analysis (Lunde and Timmermann, 

2004), in the analysis of production processes, for example, testing of the process 

stability (Park, 2015a), climate dynamics analyses (Yonetani and Gordon, 2001) 

or biomedical researches (Muccioli, et al., 1996). 

Lepage (1971) initiated this topic with his proposal by combining the Wilcoxon 

rank sum and Ansari–Bradley’s test statistics for location and scale parameters. 

A test based on Lepage’s proposal but using Mood’s test statistic for the scale 

parameter was presented by Duran et al. (1976). Later, Lepage’s procedure was 

reviewed and discussed extensively by many authors (Murakami, 2007; 

Neuhauser, Leuchs and Ball, 2011). Marozzi (2008) considered the problem of 

location and scale using a nonparametric combination procedure proposed by 

Pesarin (2001). All the reviewed and compared by a simulation study test 

statistics used quadratic forms and allow one to consider only two–sided 

alternatives. Park (2015b) excluded the use of the quadratic form for the test 

statistics to accommodate various types of alternatives. The proposition described 

in this article also enables the formulation of any types of alternative hypotheses. 

The purpose of this research is to present several statistical test proposals for 

joint comparison of location and scale parameters in two populations using 

a permutation procedure for a multi–aspect testing approach. 

The rest of the paper is organized as follows. In Section 2 the research 

problem is formally defined and two tests known in the literature for simultaneous 

testing location and scale parameters are presented. In Section 3 the 

nonparametric combination procedure for location–scale problem is 

characterized. In Section 4 several test statistics for a joint comparison of the 

location and scale parameters in two populations using a nonparametric, 

permutation procedure to assess ASL values are proposed. This Section also 

contains a simulation comparison of their size and power under normality. There 

are two cases considered in simulations: both partial alternative hypotheses are 

one– or two–sided. In Section 5 concluding remarks are presented. 
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2. Simultaneous tests for the location–scale problem 

In order to discuss the location–scale problem, let observations 
1111,..., nxx and 

2221,..., nxx be random samples taken from populations with distribution functions 

1F  and 2F  respectively. Populations are of continuous distributions iF  for i 1, 

2 with unknown parameters. The null hypothesis of comparing two populations is 

in the form of    xFxFH 210 :  . In the paper, the location–scale problem is 

considered where 21,  and 21,  are locations and scale parameters of 

populations 1 and 2 respectively. According to this notation, the null hypothesis 
can be also written as 

 21210 :  H , (1) 

versus alternative hypothesis 

 21211 :  H . (2) 

In the literature, authors most often refer to the Lepage test. However, you 
can find another test to verify the same hypothesis, proposed earlier, but not so 
well known Cucconi test (Bonnini, et al., 2014). The Cucconi test (Cucconi, 1968) 
used in the situations of finding differences in the location and scale parameters 
uses the statistic of the form (Marozzi, 2009) 
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Hypothesis H0 is rejected if C>-lnα, where   is the test size (Marozzi, 2009). 
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The second test, the Lepage test (1971), refers to the merger of two test 
statistics. This test is a combination of the Wilcoxon–Mann–Whitney (Mann and 
Whitney, 1947; Wilcoxon 1949) and Ansari–Bradley (Ansari and Bradley, 1960) 
test statistics 

 
  

 
  

 
22

0

2

0

2
~~
AW

AV

AEA

WV

WEW
L 





 00 , (4) 

where 

W – Wilcoxon–Mann–Whitney test statistics, 

A – Ansari–Bradley test statistics, 

    2/110  nnWE ,     12/1210  nnnWV , 

when n is even:     4/210  nnAE ,       1/48/22210  nnnnnAV ,  

when n is odd:     nnnAE /4/1
2

10  ,      22
210 /48/31 nnnnnAV  , 

W
~

– Wilcoxon–Mann–Whitney standardized test statistics, 

A
~

– Ansari–Bradley standardized test statistics. 

Hypothesis H0 is rejected if the calculated value of the test statistic exceeds 
the critical value of the test. Tables for the Lepage test can be found in Lepage 
(1973).  

3. Nonparametric combination procedures 

The problem of testing complex hypotheses can also be considered as 
proposed by Pesarin (2001). When the test concerns the location–scale testing 
problem then two partial hypotheses are taken into account. The null hypothesis 
in the form of (1) can be written differently as 

 
   2

0
1

00 : HHH   (5) 

and the corresponding decomposition is  

 
 

21
1

0 :  H  and 
 

21
2

0 :  H . (6) 

An alternative hypothesis, which is a negation of the null hypothesis, can then be 
written as  

 
   2

1
1

11 : HHH  , (7) 

where  

 
 

21
1

1 :  H ,  
 

21
2

1 :  H . (8) 

The paper considers a simulation approach based on the permutations of 
a data set. A nonparametric, complex procedure was used to assess the overall 
ASL (achieved significance level) value. The procedure for testing the null 
hypothesis versus the alternative hypothesis consists of two steps. First, each of 
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the partial null hypotheses is tested. Then, the results of the first step are jointly 
managed to solve the general problem (Marozzi, 2008).  

In the first stage of separate testing of each of the considered partial null 
hypotheses, ASL values are estimated following the traditional permutation 
method used during the verification of a single parameter hypothesis, i.e.:  

1. Assume the level of significance α. 

2. Calculate the value of statistic for the sample data ( 0T ). 

3. Perform the permutations of variable N–times and calculate the statistic test 

value ( kT ) for each permutation. 

4. On the basis of the empirical distribution of statistic, the ASL value is  
determined.  

Regarding location–scale testing, two partial aspects may be emphasized. 
Two permutation tests are performed and an estimate of two ASL values are 
obtained: the first for the equality test of mean or median parameters, the second 
for the equality test of scale parameters of the form 

  
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and 
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where I(.) denotes the indicator function. 
With respect to standard permutation ASL estimation, 0.5 and 1 are added to 

the numerator and denominator of the fraction, respectively. The reason is to 

obtain estimated ASL values in open interval  1,0  avoiding computational 

problems, which may arise in the second step of the nonparametric procedure. 
However, since large N is used, this correction is practically irrelevant (Marozzi, 
2008). 

The second step of the nonparametric procedure of statistical inference 
includes calculation of the overall ASL value using the combining function 
(Pesarin, 2001) 

     21 ,12 TT
ASLASLT   . 

There are many forms of combining functions for determining the overall ASL 
value, although the authors the most often used combining functions:  

  the Fisher omnibus combining function (Fisher, 1932) 
 

      21
ˆlogˆlog2

TT

F LSALSAC  , 
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 the Liptak combining function (Liptak 1958) 
 

     21
ˆ1ˆ1 11

TT

L LSALSAC  
, where   denotes the standard 

normal distribution function, 

 the Tippet combining function (Tippet, 1931) 
 

    21
ˆ1,ˆ1max

TT

T LSALSAC  . 

The observed statistics value for the sample data can be determined as 

  
    

   2
0

1
0012 21

ˆ,ˆ TLSATLSAT
TT

  , (11) 

and its distribution is determined on the basis of the same permutations of the first 
step of this procedure, for example the k–th permutation value of statistics is 
computed 

  
    

   21
12 21

ˆ,ˆ
kTkTk TLSATLSAT   . (12) 

Overall ASL value of the test is estimated by using the formula 
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where I(.) denotes the indicator function. 

4. Monte Carlo study 

Most often, the statistical inference concerns situations where there are 
differences between the considered populations without indicating the nature of 
this difference. An alternative hypothesis of form (2) is then considered. Thanks to 
permutation tests, it is also possible to consider one–sided alternative 
hypotheses, for example: 

 
21

1
1 :  H  or 

 
21

2
1 :  H . 

The study considered various forms of test statistics (Table 1). The 
simulations consisted of calculating the size and power of the presented tests 
using a complex, nonparametric method of testing the location and scale 
parameters. All 1–8 models were used in the simulation study when partial 
alternative two–sided hypotheses were considered. To verify the null hypothesis, 
when partial alternative hypotheses were one–sided hypotheses, models 1–5 
were used. Model 6 considers the form of test statistics included in the 
combination of statistics used in the Lepage test. For comparative purposes, the 
results for the permutation Lepage test (model 7) and permutation Cucconi test 
(model 8) were also included when alternative two–sided hypotheses were 
considered. The nonparametric combination procedure for the estimated overall 
ASL value was used when considering models 1–6. 
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In the simulation study samples taken from normal distribution with 

15,10 21  nn  sample sizes were considered. Three situations were analysed: 

a) 021    and 1/ 21  , 

b) 021    and 1/ 21  , 

c) 021    and 1/ 21  . 

Parameters of the distribution from which the second sample was taken are 

02   and 12  ,  whereas parameters of the distribution from which the first 

sample was taken are defined as follows: 

a) if 021    then  6.1,2.01  with the increment 0.2 and 11  , 

b) if 1/ 21   then  6.2,2.11  with the increment 0.2 and 01  , 

c) if 021    and 1/ 21   then parameters of the distribution  11,  

equal from (0.2,1.2) to (1.6,2.6) with the increment 0.2 for each 
parameter. 

Table 1. Statistics used in simulation study 

Model Statistics 
 1T  Statistics 

 2T  

1  
21

1
1 xxT   )2(

1T
2
2

2
1

s

s
 

2  
21

1
2 mmT   ,

2

1)2(

2
R

R
T   

3   WT 1
3  ,

2

1)2(

3
R

R
T   

4   WT 1
4  

  ,2
4 MT   

5   WT 1
5  

  ,2
5 OBT   

6   21
6

~
WT   

  22
6

~
AT   

7 LT 7  

8 CT 8  

where:  

21,xx  – sample means from first and second population respectively, 

21,mm  – sample medians from first and second population respectively, 

21,RR  – sample ranges from first and second population respectively, 

W – Wilcoxon–Mann–Whitney test statistics, 

M – Mood test statistics (Mood, 1954), 

OB – O’Brien test statistics (O’Brien, 1979), 

W
~

 – Wilcoxon–Mann–Whitney standardized test statistics, 
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A
~

 – Ansari–Bradley standardized test statistics, 

L – Lepage test statistics (4), 

C – Cucconi test statistics (3). 

 
 

Table 2.  Size and power estimates when 021   and 1/ 21  , 05.0 , 

 for samples 15,10 21  nn (two–sided alternative hypotheses) 

Model 

Distribution parameters  11,  

 1,0   1,2.0   1,4.0   1,6.0   1,8.0   1,1   1,2.1   1,4.1   1,6.1  

1 0.046 0.060 0.124 0.240 0.375 0.527 0.684 0.793 0.895 

2 0.048 0.065 0.114 0.206 0.307 0.430 0.570 0.689 0.816 

3 0.060 0.096 0.188 0.315 0.467 0.626 0.774 0.863 0.940 

4 0.054 0.094 0.163 0.295 0.450 0.566 0.734 0.831 0.922 

5 0.060 0.104 0.164 0.307 0.464 0.605 0.765 0.849 0.930 

6 0.057 0.069 0.111 0.207 0.343 0.502 0.649 0.765 0.889 

7 0.052 0.065 0.104 0.210 0.349 0.510 0.653 0.783 0.894 

8 0.055 0.072 0.105 0.207 0.347 0.508 0.662 0.769 0.890 

Source: Own calculation in R program. 
 
 

Table 3.  Power estimates when 021    and 1/ 21  , 05.0 , for 

 samples 15,10 21  nn , (two–sided alternative hypotheses) 

Model 

Distribution parameters  11,  

 2.1,0   4.1,0   6.1,0   8.1,0   2,0   2.2,0   4.2,0   6.2,0  

1 0.115 0.232 0.308 0.440 0.548 0.635 0.750 0.784 

2 0.112 0.203 0.305 0.417 0.498 0.604 0.713 0.752 

3 0.092 0.176 0.280 0.396 0.455 0.558 0.685 0.722 

4 0.079 0.126 0.210 0.282 0.365 0.443 0.527 0.596 

5 0.085 0.167 0.276 0.401 0.478 0.580 0.681 0.718 

6 0.068 0.133 0.159 0.263 0.316 0.386 0.477 0.545 

7 0.077 0.148 0.210 0.307 0.390 0.463 0.573 0.647 

8 0.069 0.132 0.172 0.263 0.327 0.399 0.484 0.550 

Source: Own calculation in R program. 
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Table 4.  Power estimates when 021   and 1/ 21  , 05.0 , for 

 samples 15,10 21  nn , (two–sided alternative hypotheses) 

Model 
Distribution parameters  11,  

 2.1,2.0   4.1,4.0   6.1,6.0   8.1,8.0   2,1   2.2,2.1   4.2,4.1   6.2,6.1  

1 0.145 0.269 0.463 0.624 0.742 0.840 0.874 0.930 

2 0.127 0.251 0.422 0.579 0.681 0.792 0.850 0.896 

3 0.165 0.309 0.471 0.651 0.742 0.833 0.865 0.920 

4 0.124 0.239 0.374 0.516 0.646 0.762 0.812 0.846 

5 0.131 0.288 0.469 0.642 0.762 0.859 0.889 0.935 

6 0.090 0.161 0.263 0.384 0.508 0.600 0.691 0.739 

7 0.106 0.191 0.319 0.424 0.577 0.659 0.748 0.785 

8 0.095 0.159 0.295 0.375 0.502 0.604 0.683 0.738 

Source: Own calculation in R program. 
 
 

Table 5.  Size and power estimates when 021   and 1/ 21  , 05.0 , 

 for samples 15,10 21  nn (one–sided alternative hypotheses) 

Model 

Distribution parameters  11,  

 1,0   1,2.0   1,4.0   1,6.0   1,8.0   1,1   1,2.1   1,4.1   1,6.1  

1 0.047 0.105 0.179 0.293 0.495 0.651 0.771 0.885 0.954 

2 0.042 0.096 0.166 0.261 0.402 0.568 0.691 0.830 0.925 

3 0.050 0.099 0.169 0.295 0.460 0.645 0.763 0.878 0.953 

4 0.047 0.100 0.178 0.282 0.454 0.634 0.752 0.875 0.947 

5 0.043 0.097 0.162 0.277 0.447 0.627 0.754 0.870 0.948 

Source: Own calculation in R program. 
 

For each of 1000 Monte Carlo simulations, 1000 random permutations of 

variables and the nominal significance level 05.0  were considered. The 

studies used Fisher’s combining function to determine the overall ASL value. The 
results of the simulations carried out to determine the size and power of the tests 
are presented in Tables 2–7. Estimated probabilities of rejection of the hypothesis

0H when partial two–sided alternative hypotheses were taken under 

consideration are presented in Tables 2–4. In the case of partial one–sided 
alternative hypotheses, estimated probabilities are presented in Tables 5–7, 
respectively. 
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Table 6.  Power estimates when 021    and 1/ 21  , 05.0 , for 

 samples 15,10 21  nn , (one–sided alternative hypotheses) 

Model 

Distribution parameters  11,  

 2.1,0   4.1,0   6.1,0   8.1,0   2,0   2.2,0   4.2,0   6.2,0  

1 0.108 0.183 0.320 0.437 0.536 0.616 0.708 0.779 

2 0.107 0.171 0.278 0.404 0.462 0.572 0.628 0.705 

3 0.102 0.180 0.277 0.398 0.464 0.574 0.627 0.702 

4 0.100 0.171 0.272 0.373 0.441 0.509 0.584 0.674 

5 0.110 0.196 0.319 0.435 0.528 0.599 0.659 0.737 

Source: Own calculation in R program. 
 
 

Table 7.  Power estimates when 021  and 1/ 21  , 05.0 , for 

 samples 15,10 21  nn , (one–sided alternative hypotheses) 

Model 

Distribution parameters  11,  

 2.1,2.0   4.1,4.0   6.1,6.0   8.1,8.0   2,1   2.2,2.1   4.2,4.1   6.2,6.1  

1 0.167 0.345 0.526 0.672 0.806 0.865 0.928 0.949 

2 0.159 0.322 0.490 0.625 0.745 0.838 0.895 0.933 

3 0.158 0.320 0.487 0.616 0.748 0.846 0.894 0.924 

4 0.156 0.313 0.473 0.600 0.745 0.811 0.881 0.906 

5 0.160 0.352 0.518 0.661 0.801 0.866 0.931 0.948 

Source: Own calculation in R program. 
 
 

The size of the tests is shown in Tables 2 and 5 in the first column. For all 
models, the obtained estimated probabilities are close to the nominal level of 

significance 05.0 . The tests considered achieved comparable results in the 

case of small samples, the size of which was not equal. The tests used in models 
1, 3 and 5 were the most powerful. The probabilities of detecting differences 
between populations increased with increasing differences between the 
respective location or scale parameters for both considered partial two– and one–
sided alternative hypotheses. 
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5. Conclusions 

The simulation research aimed to determine the ability of the presented 
location and scale tests to maintain the nominal probability of committing the type 
I error and the ability to obtain a high probability of rejecting a false zero 
hypothesis in the conditions of changing distribution parameters in populations 
from which samples were taken.  

The tests that verify the hypothesis about the identity of location and scale 
parameters in the studied populations are presented. The article considered 
various forms of test statistics. A simulation study to determine the size and 
power of tests was carried out using permutation tests.  

When analysing the results obtained it can be seen that the inference about 
the significance of differences between populations is possible with the use of the 
proposed solution. All testing procedures (under normality) ensured control of 
type I error at the assumed level of significance. The simulation analysis indicated 
that the proposed tests allowed the inference about the differences in location or 
scale parameters, as well as differences in both location and scale parameters of 
distributions. The results for the permutation Lepage test and permutation 
Cucconi test are also presented where two–sided alternative hypothesis is 
considered. Higher power of tests was achieved thanks to the use of 
a nonparametric procedure that uses Fisher's combining functions to evaluate the 
overall ASL value. The observed assessments of the probability of rejection of the 
null hypothesis were similar for various pairs of test statistics considered in the 
simulations. One advantage of the procedure presented in the article is also the 
possibility of formulating an alternative hypothesis in the form of partial directional 
hypotheses. The method can be used even in the case of small sample sizes. 
In the research, other forms of combining functions can be considered and 
a simulation study taking into account the various distributions of the studied 
variables can be performed. The direction of further research also concerns the 
extension of the method to a multidimensional case. 
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